Tyndall Researcher’s Quantum Computing Breakthrough

Researchers at IPIC & the Tyndall National Institute have developed a technical step that could enable the use of quantum computers and have published details in the leading journal Nature Photonics.

Conventional digital computing uses ‘on-off’ switches, but quantum computing looks to harness quantum state of matters – such as entangled photons of light or multiple states of atoms – to encode information.

In theory, this can lead to much faster and more powerful computer processing, but the technology to underpin quantum computing is currently difficult to develop at scale.

Researchers at Tyndall & IPIC  have taken a step forward by making quantum dot light-emitting diodes (LEDs) that can produce entangled photons (whose actions are linked), theoretically enabling their use to encode information in quantum computing.

This is not the first time that LEDs have been made that can produce entangled photons, but the methods and materials described in the new paper in Nature Photonics have important implications for the future of quantum technologies, explains researcher Dr Emanuele Pelucchi, Head of Epitaxy and Physics of Nanostructures and a member of the Science Foundation Ireland-funded Irish Photonic Integration Centre (IPIC) at Tyndall National Institute in Cork.

“The new development here is that we have engineered a scalable array of electrically driven quantum dots using easily-sourced materials and conventional semiconductor fabrication technologies, and our method allows you to direct the position of these sources of entangled photons,” he says. “Being able to control the positions of the quantum dots and to build them at scale are key factors to underpin more widespread use of quantum computing technologies as they develop.”

The Tyndall technology uses nanotechnology to electrify arrays of the pyramid-shaped quantum dots so they produce entangled photons. “We exploit intrinsic nanoscale properties of the whole “pyramidal” structure, in particular, an engineered self-assembled vertical quantum wire, which selectively injects current into the vicinity of a quantum dot,” explains Dr Pelucchi.

For more information please see http://www.ipic.ie/mediacentre/

Leave a Reply